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Hierarchical models of rigidity percolation
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We introduce models of generic rigidity percolation in two dimensions on hierarchical networks and solve
them exactly by means of a renormalization transformation. We then study how the possibility for the network
to self organize in order to avoid stressed bonds may change the phase diagram. In contrast to what happens on
random graphs and in some recent numerical studies at zero temperature, we do not find a true intermediate

phase separating the usual rigid and floppy ones.
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I. INTRODUCTION

Consider a structure made of sites connected by links.
Each link imposes a constraint, by prescribing the distance
between the two sites it connects: if the actual distance be-
tween the two sites is different from the prescription, there is
an associated energy cost. Rigidity theory deals with proper-
ties associated with the structure’s topology, which do not
depend on the physical nature of the constraints nor on the
precise form of the energy cost. Typical questions asked by
rigidity theory are: how many degrees of freedom are left in
the system? Is there a macroscopic cluster of sites rigidly
connected one with the others? By contrast, questions related
to the elastic properties of the structure do depend on the
specification of the constraints. When the number of links in
the structure is increased, the phenomenology is as follows.
For a small enough number of links that is a small mean
connectivity of the structure, there are many more degrees of
freedom than constraints; there is no macroscopic rigid clus-
ter, and many degrees of freedom are left in the system: the
system is said to be floppy. At large mean connectivity, there
are many more constraints than degrees of freedom; there is
a macroscopic rigid cluster, and many constraints cannot be
satisfied: the system is said to be stressed rigid. In between
these two phases takes place the rigidity percolation transi-
tion.

Despite its clearly mechanical origin, the problem of ri-
gidity percolation has also attracted attention in the last 30
years because of its applications in understanding the prop-
erties of network forming glasses, such as GeSe or GeAsSe
alloys [1,2]. In this case, the atomic bonds may be consid-
ered as constraints. However, contrary to standard rigidity
percolation as presented in the first paragraph, angles be-
tween adjacent bonds also need to be considered as con-
straints, in addition to bond lengths. In the following, we will
concentrate on central force rigidity (that is when only bond
lengths are considered as constraints) in two dimensions. Be-
yond the applications to glasses, models of cross linking stiff
fibers forming random networks were shown to fall in the
same universality class as central force two-dimensional
(2D) rigidity [3]; this type of system has been used to model
network forming proteins [4].

A decisive theoretical progress was made in the 1990s for
generic [37] 2D rigidity, with the introduction of combinato-
rial algorithms [6,7] based on Laman’s theorem [8]. These
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algorithms allow for the study of much larger samples than
before as well as more precise estimates around the critical
point [9]. In particular, for rigidity percolation on regular
lattices, the scenario of a second-order phase transition in a
different universality class than ordinary percolation seems
favored by the numerics although there has been some de-
bate on the subject [10].

From the analytical point of view however, progresses
have been slow. A field theoretical attempt by Obukhov [11]
predicts a first-order phase transition in 2D, which, when
compared with the numerics, seems to be a nongeneric fea-
ture. Some insight came from rigidity models exactly solved
on trees and various types of random graphs, with locally
treelike topology [10,12-15]. However, in these types of
models, the rigidity percolation transition is also usually first
order. This casts doubt on their usefulness to understand ge-
neric 2D rigidity. There has been also earlier attempts to
study rigidity percolation through position space renormal-
ization group [16,17]; based on small renormalization cells,
the associated predictions for the critical exponents are un-
precise. To this date, we are not aware of any precise ana-
lytical prediction for the critical exponents of 2D generic
rigidity percolation.

A few years ago, Thorpe et al. opened a research direction
by introducing the notion of network self-organization in ri-
gidity percolation models [18]. This is a natural idea in the
context of network glasses modeling: constraints that are not
satisfied create stress and bear an energy cost; the network
should then self-organize, i.e., tend to modify its structure, in
order to minimize this energy cost. In [18], numerical simu-
lations allowing self-organization point to the existence of a
third phase in between the usual floppy and rigid ones. As a
function of the mean connectivity, the phase diagram would
then show two phase transitions instead of one. Around the
same time, several experiments on network glasses drew a
picture compatible with this predicted phenomenology
[19-21]. A problem of the original simulations of [18] was
their strongly out of equilibrium character; some theoretical
studies improved on this, and confirmed the “three phases”
picture [22,23]. In [24,25], a class of self-organizing rigidity
percolation models is exactly solved and shows three phases
separated by two true thermodynamic phase transitions.
However, these exactly solvable models are based on random
networks, which have a locally tree like topology, without
small loops. This strongly influences the critical properties of
the rigidity transition; in particular, as already mentioned
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above, rigidity percolation is continuous for a regular 2D
triangular network, and it is first order in random networks.
The simulations of Refs. [26,27], performed at zero tempera-
ture on a triangular lattice, seem to confirm the phenomenol-
ogy suggested by the locally treelike random networks stud-
ies and show that the entire intermediate phase has a critical
nature. Sartbaeva et al. in [28] discuss the influence of local
structures on the existence and width of the intermediate
phase in more realistic network glasses models. Despite
these works, the question of whether self-organized rigidity
percolation on two dimensional networks at finite tempera-
ture displays a true “intermediate phase” is still open. We
conclude this paragraph by mentioning recent reviews on the
subject [29,30].

The goal of this paper is twofold. First, we introduce a
class of solvable models of 2D rigidity on hierarchical lat-
tices. These lattices, in contrast with random graphs are not
locally treelike and possess many small loops. We may then
expect for these lattices a phenomenology closer to generic
2D rigidity than random graphs. It is known that models
defined on hierarchical lattices may be exactly solvable using
renormalization transformations [31-33]; we will use the
same ideas in the context of rigidity percolation. Second, in
the spirit of [24] for random networks, we add to the hierar-
chical networks the possibility of self-organization. This pro-
vides a class of exactly solvable models, genuinely different
from the random graphs of [24,25], where it is possible to
investigate the existence of an intermediate phase.

The paper is organized as follows. In Sec. II, we summa-
rize the combinatorial approach to 2D rigidity, which will be
necessary in the following. After introducing, in Sec. III, the
class of hierarchical lattices we will be interested in, we
solve our model and study its critical properties in Sec. IV.
We then introduce the possibility of self-organization for the
hierarchical networks and solve the associated model in Sec.
V; we discuss the implications on the existence of an inter-
mediate phase between the usual floppy and stressed rigid
ones. Section VI is devoted to discussion and perspectives.

II. GENERIC 2D RIGIDITY

An intuitive approach to rigidity percolation, apparently
due to Maxwell, consists in counting degrees of freedom and
constraints. In two dimensions, each site has two degrees of
freedom; each link brings one constraint. In the end, a certain
number of degrees of freedom are left. They correspond to
unconstrained motions of the sites, and are usually called
“floppy modes.” If one thinks of each link as a spring, with a
given rest length, floppy modes are motions of the sites that
do not change any spring length and thus do not cost any
energy. Any network embedded in two dimensions necessar-
ily has at least three floppy modes, corresponding to the two
global translations and the global rotation in the plane. The
network or a subgraph of the network is said to be rigid if it
has no internal degree of freedom besides these three. In a
first approximation, a network with N sites and M links
should have

Nﬂ(,,,=max(3,2N—M) (l)

degrees of freedom left, and be rigid if 2N—-M =3. This
simple computation is obviously wrong in general, as shown
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FIG. 1. An example of a graph with N=5 sites. Before the
addition of the dashed bond, there are M =6 bonds, none of which is
redundant. The number of floppy modes is 4: two global transla-
tions, one global rotation, and the additional rotation of the one-
coordinated site. The dashed bond is redundant: the subgraph iso-
lated by the dashed curve has N,=4 sites and M,,;,=6>2N,,,
—3 bonds. The whole graph with the dashed bond also has four
floppy modes, in agreement with Eq. (2).

on Fig. 1. The reason is that when a new bond is added, it
may be “redundant:” then the constraint associated with this
new bond cannot be satisfied and its addition does not re-
move any degree of freedom. The exact formula giving the
number of floppy modes of a network is

Nﬂop =2N-M + Nred? (2)

where N,,, is the number of redundant bonds. The problem is
then reduced to the estimation of N,,,;. The simplest form of
Maxwell counting given by Eq. (1) assumes that new bonds
added in the network first exhaust the degrees of freedom
available before starting to become redundant. It is not cor-
rect, but it turns out that a generalization of this idea is ac-
tually exact [8]. It may be formulated as follows. Consider a
graph, and add a new bond to it. It is redundant if and only if
there exists a subgraph with Ny, sites and M, bonds, con-
taining this new bond, such that 2N, —M,,;,<3. This com-
binatorial formulation is at the root of the “pebble game,” a
powerful algorithm to analyze rigidity percolation on two
dimensional networks [6,7].

III. HIERARCHICAL LATTICES

We will consider the following type of hierarchical
graphs. We start from two sites, connected by one bond. The
graph is then constructed iteratively; at each step, all bonds
are replaced by a given elementary cell. Four examples of
elementary cells, corresponding to four examples of hierar-
chical graphs, are given on Fig. 2. In each case, it is easy to
obtain a recursion relation for the number of sites N, and
bonds B, of the graphs after ¢ iterations. We obtain, respec-
tively, for the four graphs of Fig. 2

Bl=oB!. Mi=NTw3 )
B=sE. MNP @
BA=180, N=NO+sEY, )
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FIG. 2. Four examples of hierarchical graphs. On the left, the graphs at step =0, with two sites and one bond; on the right, the graphs
at r=1. We call the =1 graph the “elementary cell.” (1) is an elementary cell with five sites and nine bonds. This is the hierarchical graph
we will mostly consider in the following. (2), (3) and (4) are elementary cells with, respectively, four sites and five bonds, seven sites and
12 bonds, and six sites and 12 bonds. At step ¢, each bond of step 7—1 is replaced by a subgraph identical to the =1 graph.

B =12BY, NG =N +4BY, (6)

Solving these recursion relations yields:

3X9'+13
B =9, M”:T, (7)
5'+3
B?Y=5, N?= , (8)
5% 12+ 17
BY =12, NP =", ©)
11
4% 12'+18
BY =12, M4)=T. (10)

To model the rigidity percolation phenomenon, we now as-
sume that each bond is effectively present in the graph with
probability p; thus, the number of occupied bonds is, for
large graphs, M,=pB,. The Maxwell counting procedure
yields an estimate of the threshold for rigidity percolation:
the approximate critical probability py,, corresponds to a
ratio between bonds and sites M,/N,=2. For graph on Fig.
2(2), we find p2) =1; any p<1 should then render this
graph floppy, and there is no true rigidity percolation. We
thus dismiss this example in the following. For the %raphs on
FI%S 2(1), 2(3), and 2(4) we find, respectively, pMax—3/4
P\ =10/11, and pde—S/ 11. All three graphs should then
present a rigidity transition at p<1. We will mainly concen-
trate in the following on graph (1) for the sake of simplicity.

- O0—=0

IV. SOLUTION OF THE HIERARCHICAL MODELS

The goal is to compute a recursion relation relating
N"™4(p), the number of redundant bonds of a graph iterated ¢
times, with a bond occupation probability p, and N ””d(p ),
the number of redundant bonds of a graph iterated 7— 1 times,
with a bond occupation probability p’. This will be possible
because of the peculiar structure of the network [32].

The procedure is somewhat reciprocal to the construction
of the hierarchical network. Consider a graph iterated ¢ times,
with a bond probability p. Consider two sites A and B sepa-
rated by one elementary cell, see Fig. 3. If they are rigidly
connected through this cell, we replace the whole cell by a
single bond. If they are not, we delete the whole cell. Re-
peating this procedure for all elementary cells, we construct a
new graph, iterated 7—1 times, with a bond occupation prob-
ability p’=¢(p). The function ¢(p) is constructed by count-
ing all configurations leading to a rigid connection between
A and B. This process is detailed on Table I, for the graph on
Fig. 2(1).

Collecting the different contributions, we obtain

@(p) =p’+9p°q +30p7q* +12p°¢° + 3p°¢*,  (11)
where g=1-p. We assume that the number of redundant
bonds is an extensive quantity; neglecting subdominant con-
tributions and probabilistic fluctuations, we then write

N“(p) = N,r(p), (12)

and our goal is to compute r(p). Analyzing one renormaliza-
tion step, we write

A B A B
@@—»@—@
A I

B A B
e —— O S|

FIG. 3. Renormalization of an elementary cell, and counting of redundant bonds. Top left: sites A and B are rigidly connected so that the
elementary cell is renormalized into a bond; there is one redundant bond. Top right: sites A and B are rigidly connected, no redundant bond.
Bottom left: sites A and B are not rigidly connected, no redundant bond. Bottom right: sites A and B are not rigidly connected, one redundant

bond.
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TABLE I. Enumeration of all types of possible configurations
for an elementary cell of the graph on Fig. 2(1). There are for
instance 12 configurations with six bonds, providing a rigid connec-
tion across the cell and without redundant bond. Some examples are
given on Fig. 3.

No. Rigid No. redundant No.
bonds connection bonds configurations
9 Yes 2 1
8 Yes 1 9
7 Yes 0 30
7 No 1 6
6 Yes 0 12
6 No 0 70
6 No 1 2
5 Yes 0 3
5 No 0 123
4 No 0 126
3 No 0 84
2 No 0 36
1 No 0 9
0 No 0 1
Ni“(p) = Nl @)1+ Ny (8:9), (13)

where N/, ,(t,p) represents all the redundant bonds that
where suppressed in the renormalization process. This for-
mula needs some justification. Consider the empty (without
bonds) graph at step ¢ and add the bonds one by one, check-
ing each time if the newly added bond is redundant or not;
this is actually the numerical strategy implemented in the
pebble game algorithm. If the added bond is redundant, it is
discarded. Thus, during the process, the constructed graph
has at most one redundant bond. If an added bond is redun-
dant, it is possible to find a subgraph S, containing this new
bond, with N, sites and M,,,=2N,,,;,—2 bonds. We choose
S as small as possible. There are now two possibilities. Ei-
ther S is included in one elementary cell; in this case the
redundant bond is included in the N,,,(z,p) contribution. Or
S is not included in an elementary cell. It is easy to see that
no floppy elementary cell can be included in S so that the
newly added bond necessarily “rigidifies” the elementary cell
it belongs to. In addition, if S contains a bond included in
one elementary cells, S contains both sites which are end
points of the cell, and the cell is rigid. S, which is included in
the graph at step # will then be renormalized in a natural way
in a subgraph of the graph at step r—1. The redundant con-
straint is thus included in the N,’f‘,’[go(p)] contribution to Eq.
(13). It is worth mentioning that both the hierarchical nature
of the graph and the convenient combinatorial description of
2D rigidity outlined in Sec. II are necessary for this step. In
particular, it is not clear how to construct exactly solvable
hierarchical models of three-dimensional (3D) rigidity.

For a given bond probability p, we want to compute ro(p),
the mean number of redundant bonds inside one elementary
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critical point
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p

FIG. 4. (Color online) The red curve y=¢(p) (thick line), to-
gether with the blue y=p straight line (thin line). The critical point
defined by ¢(p*)=p* is indicated by an arrow.

cell. We use Table I to enumerate all possibilities, and we
obtain the following expression for ry(p):

ro(p) =2p° + 9p®q + 6p’q” + 2p°¢°>. (14)

In one renormalization step, a large number of elementary
cells B,_; is renormalized. Thus N, (7,p)=B,_ry(p). Fi-
nally, the recursion relation reads as

Nir(p) =Nl @(p)]+ B,_1ro(p). (15)

Using the relations B,=B" and B,/ N,=x,, and simplifying by
N,, this yields

1(p) = Tolp)]+ 7). (16)

with 7(p) =xoro(p)/B. For our main example, represented on
Fig. 3, B=9 and x(,=8/3.

From Eq. (2), we see that for given numbers of sites and
bonds, the number of floppy modes is linearly related to the
number of redundant bonds. Since it has been noticed [10]
that the number of floppy modes plays the role of a “free
energy” in rigidity percolation models, we remark that the
computation of r(p) is analogous to the free-energy compu-
tation of Ref. [33] for spin models on hierarchical lattices.

The function ¢ is plotted on Fig. 4. It has three fixed
points; p=0 and p=1 are stable and correspond to the floppy
and rigid phases, respectively. p=p*=0.867 is unstable and
is the critical point. We note ¢'¥) the kth iterate of ¢. Then for
all p<p* (respectively, p>p*), " (p) tends to O (respec-
tively, 1). The quantity a=de/dp(p=p*) =1.97 will play an
important role. We note that if we had used the hierarchical
network on Fig. 2(2), we would have obtained a function ¢
with only two fixed points: p=0 (stable) and p=1 (unstable).
Thus, in this case, any p <1 yields a floppy network at large
scales. A similar analysis for the graphs on Figs. 2(3) and
2(4) yields, respectively, p*=0.975 and p*=0.853 for the
critical densities and a=1.86 and a=2.07 for the ¢ derivative
at criticality. We note that in all three cases, we find p*

>pMax-
Iterating n times Eq. (16), one obtains
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1 1 1
r(p) = Er[so(”)(p)] + Bn_170[<p(”‘“(p)] ot o)

+7o(p). (17)

As B>1 and 7 is bounded, » may then be expressed as an
infinite series:

r(p) = 2 ro[<P<k)(P):| (18)
=0 B

As the k times iterated function ¢ (p) tends pointwise to 0
when p<p* and to 1 when p>p*, the above series is infi-
nitely differentiable, except when p=p*, the unstable fixed
point of ¢. Looking for a power-law behavior of r close to p*

r(p) = const |p — p*|” + regular part, (19)

one finds 7=In B/In a. For our main example, we find 7
=3.24; this corresponds to a critical exponent a=-1.24,
where we have used the standard notation for the critical
exponent associated with the free-energy singularity. This
means that the derivatives of r(p) are all continuous up to
third order, while the fourth derivative is discontinuous. This
does not compare well to the numerical results on triangular
networks [9], which find a=-0.48. Networks on Figs. 2(3)
and 2(4) yield, respectively, 7=4.01 and 7=3.41, which cor-
responds to a=-2.01 and a=-1.41. Thus, there are impor-
tant fluctuations in the value of the critical exponent between
two different hierarchical networks. We note however that
the tendency to a very weak rigidity percolation transition on
these hierarchical networks seems to be general. A natural
idea to improve the agreement between these analytical re-
sults on hierarchical networks and the numerics on triangular
lattices would be to consider larger renormalization cells.
The previous remarks cast doubt on this strategy. Another
interesting extension would be to study other critical proper-
ties, such as the size of the largest rigid cluster or the largest
stressed cluster.

V. ADAPTIVE NETWORKS
A. Introduction of an energy

We consider now the possibility for the network to modify
its structure, in order to avoid stress. This step was first taken
in [18], in an attempt to better model network glasses; in this
context, it is natural to assume that the connectivity structure
of the network may adapt itself to a certain extent to avoid
stressed bonds. Following [24], we introduce an energy cost
for each constraint which is not satisfied; at any finite tem-
perature, this cost competes with the entropic cost of reorga-
nizing the network. In this setting, standard rigidity percola-
tion, as studied up to now, corresponds to the infinite
temperature limit, where the energy cost is negligible.

We have to define an energy for any configuration of the
network. The simplest choice is to count the number of re-
dundant bonds and to attribute the same amount of energy to
each of them [24,25].

We consider a network where a proportion x of the bonds
is present. The partition function for our model on a hierar-
chical network iterated ¢ times reads as

PHYSICAL REVIEW E 80, 061108 (2009)

E e PNreal) , (20)
{1).31=xB,

Zt(x’ B) =

where we note /;=1 if bond j is present /;=0 otherwise; E{l}
is the sum over all possible conﬁguratlons of the network.
Here, it is restricted to the configurations with the prescribed
fraction of occupied bonds, x.

To proceed, it is useful to relax the constraint on the num-
ber of bonds. We introduce a “grand canonical” statistical
ensemble, whose partition sum reads as

Q(p,p) = X p™lighr=liePNrealp) (21)
{1t

where p is the a priori probability that a bond is present and
g=1-p. 2l; is the total number of bonds in the network in
configuration {/;}. We recall that B, is the maximum number
of bonds. Because of the energetic term which biases the
probability distribution toward non stressed configurations,
the actual number of bonds present in the network is differ-
ent from pB,, except in the infinite temperature limit. We
may rewrite the partition sum as

A B
e t
Ql(p’ B) = ( }\) 2 E_)\EZfE_BNred({lj})’ (22)
l+e 0

where

>\=1n<1_p>. (23)
p

We define w(p,B)=In Q,(p,B)/N,. Generalizing the renor-
malization transformation of the previous section, it is pos-
sible to compute exactly w(p,B). We consider one elemen-
tary cell and want to compute ¢(p, ), the probability that
this elementary cell is renormalized as a bond. The calcula-
tion is the same as in Sec. IV except that we have to attribute
a weight ¢™# instead of 1 to configurations with n redundant
bonds. For the elementary cell of our chief example, Fig.
2(1), we use once again Table I to obtain

qDl(p’B)

(p(p,ﬁ) (Pl(p’ ,8) + 900(17,,3) ' (24)
where ¢; collects the contributions of the configurations
where the end sites of the cell are rigidly connected and ¢
collects the contributions of the configurations where the end
sites of the cell are not rigidly connected. Division by ¢
+ ¢ is for normalization. We have

@1(p.B)=p’e P +9pPqe™P +30p"q* + 12p°¢* + 3p°q*

@o(p.B) =6p"q*
+126p%q° + 84p°¢° + 36p%q" + 9pg® + ¢°.

(25)

e P+ 2p8¢ P+ 70p5¢° + 123p°¢*

Some curves ¢(p,B) are drawn for various values of B on
Fig. 5. We also define

C(p’:B) = QDl(p’:B) + QDO(p’ﬁ) (26)

Then, following the same reasoning as above, we derive the
recursion relation:
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critical paints:
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0.6r b
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0.2r b

0 0.2 0.4 0.6 0.8 1
p

FIG. 5. (Color online) Examples of functions ¢(p, 8), as a func-
tion of p; from left to right, 8=0,1,5 (thick lines, respectively red,
black, and light blue curves). The intersection with the y=p straight
line (blue thin line) is the critical point. A low temperature shifts the
critical point toward high p values.

Q(p.B) = c(p.B*Q, [ @(p. B). B]. (27)
Taking the logarithm,

N,w(p.B) =B, Inc(p.p) + N, 0l¢(p.B).B].  (28)
Recalling that N,=3 X 9/8 and B,=9’, we have

olp. )= 5in e B+ golep B (29)

This yields the following expression for w:

[

18

_ — (k)
w(p,ﬁ)—ggmlnc[@ (».B)]. (30)

As above, ¢® is the kth iterate of the function ¢. We note
that the recursion relation for p depends parametrically on 8
and that the temperature is not renormalized in the process.
This implies that there exists a line of critical points, and that
the critical exponents continuously depend on S along this
line. From Egs. (22) and (23), we obtain an expression for

x(p,B)
8 w
(B =2+ p(1 —p)‘;—p. 31)

We would like to study our model at fixed x; the previous
formula tells us how to choose p to do so, providing the
bridge between canonical and grand canonical ensembles.
Figure 6 shows various x(p) curves for different values of 8.
From Fig. 5, we can see that p*(8) tends to 1 for large B as
we could have anticipated. However, the critical connectivity
x*(B) does not tend to 8/3, see Fig. 6. A crucial observable is

w

critical points

00 0.2 0.4 0.6 0.8 1

p

FIG. 6. (Color online) The mean connectivity of the network x
as a function of p. From left to right, 8=0,1,5 (respectively, red,
black, and light blue curves). The critical points are also indicated.
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0.7

0.61

0.5r

0.41

0.3r critical points:

Number of redundant bonds per site

0.1

0 0.5 1 1.5 2 25

FIG. 7. (Color online) The number of redundant per site is plot-
ted as a function of the mean connectivity x for 8=0,1,5 (from left
to right, respectively, red, black, and light blue curves). The crosses
indicate the critical points; the filled circles are results of Metropolis
Monte Carlo simulations, for S=1, using the pebble game algo-
rithm, on hierarchical graphs with r=5 (22 145 sites). They are in
perfect agreement with the analytical results.

the energy per site that is the number of redundant bonds per
site n,,4; it is computed using the formula:

Jw
Mo = - 32
ed &B ( )
n,.4(p,B) curves are shown on Fig. 7, together with results of
Monte Carlo simulations.

B. Intermediate phase

From the exact solution of the model provided in the pre-
vious paragraph, it is clear that the introduction of an energy
and a finite temperature does not induce any qualitative
change in the phase diagram: as a function of the connectiv-
ity, there are only two phases, floppy and rigid, separated by
a phase transition at a critical connectivity x*(8). Thus, our
first conclusion is that in this model, the intermediate phase
does not have a real thermodynamical meaning. It is an im-
portant difference with the case of the random networks
[24,25]. This result seems related to the strength of the per-
colation transition, which is first order in random networks
and very weak on the hierarchical lattices introduced in this
paper.

However, looking at the curves on Fig. 7, it is possible at
low temperatures to distinguish three regions for low enough
temperatures. At low connectivity x <2, there is essentially
no redundant bond and thus no stress in the network; for 2
<x<x"(B), there is some stress in the network, but it does
not percolate; finally, for x>x*(8), the stress percolates in
the network. The boundary between the two first regions is
not a thermodynamical transition; rather, it is a crossover
which becomes sharper as the temperature decreases. In this
crossover region, isostatic local structures are favored, and
the effect of network self-organization is the strongest. To
illustrate these points, we have plotted on Fig. 8 the fraction
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FIG. 8. (Color online) Top panel: the self organization indicator
s=(p—3x/8)/p as a function of the mean connectivity x. Bottom
panel: fraction of isostatic elementary cells as a function of the
mean connectivity. In both panels, 8=0,1,5 from bottom to top
(respectively, red, black, and light blue curves), and the crosses
indicate the critical points. Note that s is identically 0 when S=0.

of isostatic elementary cells (with exactly seven bonds). To
define an indicator for self-organization, we note that without
network adaptivity (or equivalently at infinite temperature),
the mean connectivity x is directly proportional to the param-
eter p and given by x=8p/3; we may then define a self-
organization indicator as s=(p—3x/8)/p. s is plotted on Fig.
8 and peaks in the crossover region, just as the fraction of
elementary cells. The lower the temperature, the sharper the
peaks get.

Finally, we stress that we find a percolation transition at a
critical density x,.=2.3, larger than the Maxwell threshold
Xpmax=2. This contrasts with rigidity models on random
graphs, for which the critical density is usually lower than

XMax-

VI. CONCLUSION

Our first result is the construction of solvable models for
rigidity percolation, beyond trees, and random networks.
These models display a critical point at the rigidity percola-
tion threshold, and the critical exponent for the number of
redundant bonds (which corresponds to the free energy) can

PHYSICAL REVIEW E 80, 061108 (2009)

be computed exactly. It would be interesting to compute also
the exponent associated with the biggest rigid cluster in the
network. In any case, it is known that these exponents, com-
puted on such hierarchical networks, cannot be taken as re-
liable estimates for the exponents associated to regular lat-
tices. However, these exponents may converge to the correct
ones when one considers larger and larger cells for the hier-
archical networks [34]. One may then think of a large cell
Monte Carlo renormalization procedure to obtain an estima-
tion of the critical exponents for 2D generic rigidity perco-
lation. Some words of caution are in order: it is not clear how
to extend to large sizes the hierarchical networks considered
in this paper nor if they may be a good approximation of a
regular lattice even for large cell sizes. It may be necessary
to introduce other types of hierarchical lattices.

Our second result concerns the effect of self organization
on rigidity percolation for these hierarchical models. We de-
fine and solve exactly a model where the network may adapt
its structure to avoid stress at an entropic cost. At variance
with what happens for random networks, the possibility of
self-organization does not introduce a qualitative change in
the phase diagram. In particular, there is no true thermody-
namic intermediate phase. It may still be possible to define
an intermediate region, where the network is close to be
isostatic, and the stress does not percolate although it is
present locally. It would be interesting to compare the prop-
erties of this intermediate region with the picture of the in-
termediate phase drawn from a size increasing cluster ap-
proximation [22]. From the modeling point of view, we note
that a scenario where sharp phase transitions are replaced by
smoother crossovers may still be compatible with the experi-
ments on network glasses.

All our analysis relies on the combinatorial description of
2D generic rigidity. It should be possible to study similar
hierarchical models of 3D rigidity with bond bending con-
straints using the associated combinatorial description [35].
It is not clear however how to generalize the technique to 3D
networks with central forces only as there is no simple com-
binatorial description in that case (see [36] for a recent dis-
cussion).
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